
JET FLAVOR TAGGING FOR HIGGS
PHYSICS

1

JAVIER DUARTE (UCSD)
SNOWMASS EF02
HIGGS+FLAVOR MEETING
SEPTEMBER 3, 2020

OUTLINE
▸ Introduction
▸ Overview of flavor tagging
▸ Recent developments (ML)
▸ Use in analysis
▸ Experimental considerations
▸ Use in the trigger
▸ Summary and outlook

▸ Note: Apologies for CMS-centric details

2

INTRODUCTION
▸ Heavy flavor jet tagging is an important aspect of Higgs searches
▸ Techniques have been “ML”-based for a while [arXiv:1607.08633]
▸ e.g. in NN taggers in LEP [arXiv:hep-ex/0311003], D0 [arXiv:1002.4224], MV1 at

ATLAS [arXiv:1512.01094] in ATLAS and cMVA, CSVv2 in CMS [arXiv:1712.07158]
▸ Recently played a role in

the observation of VH(bb)
▸ Techniques are still

evolving
▸ 2nd generation (charm)

more challenging

3

40 60 80 100 120 140 160 180 200
 [GeV]bbm

2−
0
2
4
6
8

10
12
14
16
18

Ev
en

ts
 /

10
 G

eV
 (W

ei
gh

te
d,

 b
ac

kg
r.

su
b.

)

Data
=1.06)µ (b b→VH, H

Diboson
Uncertainty

ATLAS
 -1 = 13 TeV, 79.8 fbs

Dijet mass analysis

0+1+2 leptons
2+3 jets, 2 b-tags
Weighted by Higgs S/B

m(jj) [GeV]
60 80 100 120 140 160

S/
(S

+B
) w

ei
gh

te
d

en
tri

es

0

500

1000

Data

bb→VH,H

bb→VZ,Z

S+B uncertainty

CMS
 (13 TeV)-177.2 fb

H decay BF

bb 58.2%

cc 2.9%

https://arxiv.org/abs/1607.08633'
https://arxiv.org/abs/hep-ex/0311003
https://arxiv.org/abs/1002.4224
https://arxiv.org/abs/1512.01094
https://arxiv.org/abs/1712.07158
https://arxiv.org/abs/1607.08633'
https://arxiv.org/abs/hep-ex/0311003
https://arxiv.org/abs/1002.4224
https://arxiv.org/abs/1512.01094
https://arxiv.org/abs/1712.07158

b jet

PV
jet

anti-kT
R=0.4

HEAVY FLAVOR TAGGING APPROACHES

b jet

PV
jet

▸ Handles:
anti-kT
R=0.4

HEAVY FLAVOR TAGGING APPROACHES

SV
b jet

PV
jet

flight distance

▸ Handles:
▸ secondary vertices

anti-kT
R=0.4

HEAVY FLAVOR TAGGING APPROACHES

SV

displaced
tracks

b jet

PV
jet

flight distance

▸ Handles:
▸ secondary vertices
▸ displaced tracks

anti-kT
R=0.4

HEAVY FLAVOR TAGGING APPROACHES

SV

displaced
tracks

b jet

PV
IP

jet

flight distance

▸ Handles:
▸ secondary vertices
▸ displaced tracks
▸ large impact parameters

anti-kT
R=0.4

HEAVY FLAVOR TAGGING APPROACHES

SV

displaced
tracks charged  

lepton

b jet

PV
IP

jet

flight distance

▸ Handles:
▸ secondary vertices
▸ displaced tracks
▸ large impact parameters
▸ soft leptons

anti-kT
R=0.4

HEAVY FLAVOR TAGGING APPROACHES

PV
jet

SV1

SV2

IP2

charged  
lepton

displaced
tracks

H(bb) jet

IP1

‣ Additional handles:
‣ Relative position of SVs

HIGGS (DOUBLE-B) TAGGING
▸ Handles:
▸ secondary vertices
▸ displaced tracks
▸ large impact parameters
▸ soft leptons

anti-kT
R=0.8

RECENT ML DEVELOPMENTS FOR NARROW JETS
▸ DeepJet [dlps_2017_10, CMS-DP-2018-058] considers low-level charged and

neutral particle, secondary vertex, and global features to categorize the flavor
of AK4 jets using a mixture of recurrent and dense neural networks

▸ Large improvement over
previous methods:
▸ DeepJet: 84% b-jet efficiency for 1% mis-id
▸ DeepCSV: 75% b-jet efficiency

6

A PREPRINT - MARCH 24, 2020

Charged (16 features) x25

Dense
200 nodes x1,
100 nodes x7

b
bb

lepb
c
l
g

Neutral features) x25

1x1 conv. 64/32/32/8

1x1 conv. 32/16/4

1x1 conv. 64/32/32/8

RNN 150

RNN 50

RNN 50 Secondary Vtx (12 features) x4

Global variables (15 features)

(6

Figure 1: An illustration of the DeepJet architecture.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
b-jet efficiency

3−10

2−10

1−10

1

m
is

-id
 ra

te CMS Simulation
 events tt

 > 30 GeV)
T

AK4jets (p

DeepJet
DeepCSV

b vs udsg
b vs c

0.4 0.5 0.6 0.7 0.8 0.9 1
b-jet efficiency

3−10

2−10

1−10

1

m
is

-id
 ra

te CMS Simulation
 events tt

 > 90 GeV)
T

AK4jets (p

DeepJet
DeepCSV

b vs udsg
b vs c

Figure 2: Performance of the DeepJet and DeepCSV b-tagging algorithms in tt̄ events with both tops decaying
hadronically. The jets are required to have pT> 30GeV (left) and pT> 90GeV (right). The performance is shown for
both b vs c classification (dashed lines), and b vs light (solid lines).

can be seen in Fig. 1. First automatic high-level feature engineering is performed using up to four 1x1 convolutional
layers [32], projecting and compressing the features of each physics object into a lower dimensional space. Separate
convolutional branches are used for vertices, charged PF candidates and neutral PF candidates. Each of these physics
objects sequences are then fed into a LSTM. The three LSTM outputs are concatenated with the global features of
the jet and then fed into a fully connected layer with 200 nodes, followed by 7 fully connected layers with 100 nodes
each. Throughout the network the ReLU activation function is used, except for the output layer, where the softmax
activation is utilized. At the start of the network, and in between each layer, batch normalization [33] is performed, and
dropout [34] with a rate of 0.1 is applied. Categorical cross entropy is used as the loss function for the training. The
algorithm is optimized using the Adam optimizer [35] with a learning rate of 3 · 10�4 for 65 epochs. The learning rate
is also halved if the validation sample loss stagnates for more than 10 epochs. After the first training epoch, the input
batch normalization layer is frozen. Possible over-training is monitored through the validation loss, mostly dominated
by medium pT jets, and additionally through ROC curves in different pT ranges.

4 Performance

4.1 Comparison with previous models

As a reference for judging the performance of DeepJet, we are comparing it with the CMS b-tagger DeepCSV [29].
DeepCSV is a fully connected neural network consisting of 5 layers with 100 nodes using high level features of
pre-selected tracks and vertices as input. The details of the track selection and the network are described in Ref [29].

The overall performance of DeepJet is compared to DeepCSV using a fully hadronic tt̄ sample, as shown in Fig. 2.
DeepJet performs significantly better than DeepCSV with an efficiency increase of almost 20% at 10�3 misidentification
probability for jets with pT> 90GeV.

3

A PREPRINT - MARCH 24, 2020

Figure 1: An illustration of the DeepJet architecture.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
b-jet efficiency

3−10

2−10

1−10

1

m
is

-id
 ra

te CMS Simulation
 events tt

 > 30 GeV)
T

AK4jets (p

DeepJet
DeepCSV

b vs udsg
b vs c

0.4 0.5 0.6 0.7 0.8 0.9 1
b-jet efficiency

3−10

2−10

1−10

1

m
is

-id
 ra

te CMS Simulation
 events tt

 > 90 GeV)
T

AK4jets (p

DeepJet
DeepCSV

b vs udsg
b vs c

Figure 2: Performance of the DeepJet and DeepCSV b-tagging algorithms in tt̄ events with both tops decaying
hadronically. The jets are required to have pT> 30GeV (left) and pT> 90GeV (right). The performance is shown for
both b vs c classification (dashed lines), and b vs light (solid lines).

can be seen in Fig. 1. First automatic high-level feature engineering is performed using up to four 1x1 convolutional
layers [32], projecting and compressing the features of each physics object into a lower dimensional space. Separate
convolutional branches are used for vertices, charged PF candidates and neutral PF candidates. Each of these physics
objects sequences are then fed into a LSTM. The three LSTM outputs are concatenated with the global features of
the jet and then fed into a fully connected layer with 200 nodes, followed by 7 fully connected layers with 100 nodes
each. Throughout the network the ReLU activation function is used, except for the output layer, where the softmax
activation is utilized. At the start of the network, and in between each layer, batch normalization [33] is performed, and
dropout [34] with a rate of 0.1 is applied. Categorical cross entropy is used as the loss function for the training. The
algorithm is optimized using the Adam optimizer [35] with a learning rate of 3 · 10�4 for 65 epochs. The learning rate
is also halved if the validation sample loss stagnates for more than 10 epochs. After the first training epoch, the input
batch normalization layer is frozen. Possible over-training is monitored through the validation loss, mostly dominated
by medium pT jets, and additionally through ROC curves in different pT ranges.

4 Performance

4.1 Comparison with previous models

As a reference for judging the performance of DeepJet, we are comparing it with the CMS b-tagger DeepCSV [29].
DeepCSV is a fully connected neural network consisting of 5 layers with 100 nodes using high level features of
pre-selected tracks and vertices as input. The details of the track selection and the network are described in Ref [29].

The overall performance of DeepJet is compared to DeepCSV using a fully hadronic tt̄ sample, as shown in Fig. 2.
DeepJet performs significantly better than DeepCSV with an efficiency increase of almost 20% at 10�3 misidentification
probability for jets with pT> 90GeV.

3

https://dl4physicalsciences.github.io/files/nips_dlps_2017_10.pdf
https://cds.cern.ch/record/2646773
https://dl4physicalsciences.github.io/files/nips_dlps_2017_10.pdf
https://cds.cern.ch/record/2646773

DEEP DOUBLE-X, DEEP AK8 TAGGERS

0 0.1 0.2 0.3 0.4 0.5 0.6

Signal efficiency

4−10

3−10

2−10

1−10

1

Ba
ck

gr
ou

nd
 e

ffi
ci

en
cy

 (13 TeV)

CMS
Simulation

DeepAK8
DeepAK8-MD
double-b

Higgs boson vs. QCD multijet
| < 2.4gen

η < 500 GeV, |gen
T

300 < p
 < 140 GeVAK8

SD90 < m

‣ Deep double-x and deep AK8 in CMS: similar approach using low-level features now
applied to large-radius jets
‣ 50-70% H(bb) efficiency for 1% mis-id (depending on mSD, pT range)

‣ Related: Higgs jet tagger in ATLAS [arXiv:1906.11005]

DP-2018/033
arXiv:2004.08262 7

………

 particles, ordered by pT

fe
at

ur
es

Particles

1D CNN
(10 layers)

………

 SVs, ordered by SIP2D

fe
at

ur
es

Secondary Vertices

Fully
connected

(1 layer)

Output

1D CNN
(14 layers)

filter

filter

DEEP DOUBLE-B TAGGER

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
b ̄b resonance tagging efficiency

10−3

10−2

10−1

100

Q
C

D
 m

is
id

en
tif

ic
at

io
n

pr
ob

ab
ilit

y

2017 (13 TeV)

CMSSimulation
450 < pT < 1200 GeV
40 < mSD < 200 GeV

DBT, AUC = 93.0%

DDBT, AUC = 97.3%

x2.5 better
background

rejection

x1.5 better
signal

efficiency

‣ Process track and SV inputs as ordered lists
‣ Combine in final layer with expert inputs
‣ Performance gain over previous algorithm

DP-2018/033

secondary
vertex
inputs

Conv1D
(2 layers,

32+32 units,
dropout = 0.1)

Conv1D
(2 layers,

32+32 units,
dropout = 0.1)

track
inputs

GRU
(50 units,

dropout = 0.1)

GRU
(50 units,

dropout = 0.1)

expert
inputs

Fully
connected

(1 layer,

100 units,
dropout = 0.1)

(60, 32)

(5, 32)

(60, 8)

(5, 2)

(27)

(50)

(50)
(100) vs.

15

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
b ̄b resonance tagging efficiency

10−3

10−2

10−1

100

Q
C

D
 m

is
id

en
tif

ic
at

io
n

pr
ob

ab
ilit

y

2017 (13 TeV)

CMSSimulation
450 < pT < 1200 GeV
40 < mSD < 200 GeV

DBT, AUC = 93.0%

DDBT, AUC = 97.3%

Deep double-b

Deep AK8

https://arxiv.org/abs/1906.11005
https://arxiv.org/abs/1906.11005
https://twiki.cern.ch/twiki/bin/view/CMSPublic/BTV13TeVDDBDDC
https://arXiv.org/abs2004.08262
https://twiki.cern.ch/twiki/bin/view/CMSPublic/BTV13TeVDDBDDC
https://arXiv.org/abs2004.08262

USE IN PHYSICS ANALYSIS
▸ New tagging (deep AK8 and deep double-b) methods used in CMS VH(cc) and

ggH(bb) searches
▸ These searches made possible because of these methods!

60 80 100 120 140 160 180 200

Higgs candidate mass [GeV]
0

20

40
60

80

100

120
140

160

180

200

Ev
en

ts

 (13 TeV)-135.9 fb

CMS Observed bb)→VH(H
cc)→VZ(Z VV(other)

Single Top tt
W+jets Z+jets

=21µcc), →VH(H 100×cc) →VH(H
S+B Uncertainty

60 80 100 120 140 160 180 200
Higgs candidate mass [GeV]

0.6
0.8

1
1.2
1.4

ex
p

/N
ob

s
N

Merged-jet
0L
High purity

8

 (GeV)SDm

0

5000

10000

15000

20000

25000

Ev
en

ts
 /

7
G

eV W
Z
tt

Multijet
Total background

=3.7
H
µ), bH(b

Data

 (13 TeV)-1137 fb

CMS
 < 1200 GeV

T
450 < p
Deep double-b tagger
Passing region

60 80 100 120 140 160 180 200
 (GeV)SD m

4−
2−
0
2
4

D
at

a
σ

 B
kg

−
D

at
a

MORE ML DEVELOPMENT: GRAPH NEURAL NETWORKS

xk

xj
xi

xℓ

GNN:

9

MORE ML DEVELOPMENT: GRAPH NEURAL NETWORKS
▸ Graph neural networks for jet

tagging:
▸ Each jet is treated as a

graph of connected nodes (particles)

xk

xj
xi

xℓ

GNN:

9

https://arxiv.org/abs/1902.08570
https://arxiv.org/abs/1801.07829
https://arxiv.org/abs/1908.05318
https://arxiv.org/abs/1909.12285
https://arxiv.org/abs/1612.00222
https://arxiv.org/abs/1806.01261
https://arxiv.org/abs/2001.05311
https://indico.fnal.gov/event/45230/contributions/195930/
https://arxiv.org/abs/1810.05165
https://arxiv.org/abs/1902.08570
https://arxiv.org/abs/1801.07829
https://arxiv.org/abs/1908.05318
https://arxiv.org/abs/1909.12285
https://arxiv.org/abs/1612.00222
https://arxiv.org/abs/1806.01261
https://arxiv.org/abs/2001.05311
https://indico.fnal.gov/event/45230/contributions/195930/
https://arxiv.org/abs/1810.05165

MORE ML DEVELOPMENT: GRAPH NEURAL NETWORKS
▸ Graph neural networks for jet

tagging:
▸ Each jet is treated as a

graph of connected nodes (particles)
▸ NN learns to update node features

from relationships between pairs of nodes
xk

xj
xi

xℓ
ϕ(xi, xj)

xk

xj
x′ i

xℓ
ϕ(xi, xℓ)

ϕ(xi, xk)

Edge convolution

ϕ :
Edge

neural
network

GNN:

9

https://arxiv.org/abs/1902.08570
https://arxiv.org/abs/1801.07829
https://arxiv.org/abs/1908.05318
https://arxiv.org/abs/1909.12285
https://arxiv.org/abs/1612.00222
https://arxiv.org/abs/1806.01261
https://arxiv.org/abs/2001.05311
https://indico.fnal.gov/event/45230/contributions/195930/
https://arxiv.org/abs/1810.05165
https://arxiv.org/abs/1902.08570
https://arxiv.org/abs/1801.07829
https://arxiv.org/abs/1908.05318
https://arxiv.org/abs/1909.12285
https://arxiv.org/abs/1612.00222
https://arxiv.org/abs/1806.01261
https://arxiv.org/abs/2001.05311
https://indico.fnal.gov/event/45230/contributions/195930/
https://arxiv.org/abs/1810.05165

MORE ML DEVELOPMENT: GRAPH NEURAL NETWORKS
▸ Graph neural networks for jet

tagging:
▸ Each jet is treated as a

graph of connected nodes (particles)
▸ NN learns to update node features

from relationships between pairs of nodes
▸ Graph-level outputs are obtained

by summing over node-level features

xk

xj
xi

xℓ
ϕ(xi, xj)

xk

xj
x′ i

xℓ
ϕ(xi, xℓ)

ϕ(xi, xk)

Edge convolution

ϕ :
Edge

neural
network

GNN:

9

https://arxiv.org/abs/1902.08570
https://arxiv.org/abs/1801.07829
https://arxiv.org/abs/1908.05318
https://arxiv.org/abs/1909.12285
https://arxiv.org/abs/1612.00222
https://arxiv.org/abs/1806.01261
https://arxiv.org/abs/2001.05311
https://indico.fnal.gov/event/45230/contributions/195930/
https://arxiv.org/abs/1810.05165
https://arxiv.org/abs/1902.08570
https://arxiv.org/abs/1801.07829
https://arxiv.org/abs/1908.05318
https://arxiv.org/abs/1909.12285
https://arxiv.org/abs/1612.00222
https://arxiv.org/abs/1806.01261
https://arxiv.org/abs/2001.05311
https://indico.fnal.gov/event/45230/contributions/195930/
https://arxiv.org/abs/1810.05165

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Tagging efficiency (H ! bb̄)
10°3

10°2

10°1

100

M
is

ta
gg

in
g

ra
te

(Q
C

D
)

2016 (13 TeV)CMS Simulat ion Open Data

300 < jet pT < 2000 GeV
40 < jet mSD < 200 GeV

Double-b (BDT), AUC = 91.7%, acc. = 83.8%
Deep double-b (RNN+CNN), AUC = 97.2%, acc. = 91.7%
GNN, AUC = 99.0%, acc. = 95.5%

MORE ML DEVELOPMENT: GRAPH NEURAL NETWORKS
▸ Graph neural networks for jet

tagging:
▸ Each jet is treated as a

graph of connected nodes (particles)
▸ NN learns to update node features

from relationships between pairs of nodes
▸ Graph-level outputs are obtained

by summing over node-level features
▸ Examples:
▸ ParticleNet [arXiv:1902.08570], based on DGCNN

[arXiv:1801.07829]
▸ JEDI-Net/HiggsInteractionNet

[arXiv:1908.05318, arXiv:1909.12285],
based on IN [arXiv:1612.00222, arXiv:1806.01261]

▸ ABCNet [arXiv:2001.05311], see talk by Vinicius
▸ Energy Flow Networks [arXiv:1810.05165]

xk

xj
xi

xℓ
ϕ(xi, xj)

xk

xj
x′ i

xℓ
ϕ(xi, xℓ)

ϕ(xi, xk)

Edge convolution

ϕ :
Edge

neural
network

GNN:

9

>80% H(bb)
efficiency for

1% mis-id

https://arxiv.org/abs/1902.08570
https://arxiv.org/abs/1801.07829
https://arxiv.org/abs/1908.05318
https://arxiv.org/abs/1909.12285
https://arxiv.org/abs/1612.00222
https://arxiv.org/abs/1806.01261
https://arxiv.org/abs/2001.05311
https://indico.fnal.gov/event/45230/contributions/195930/
https://arxiv.org/abs/1810.05165
https://arxiv.org/abs/1902.08570
https://arxiv.org/abs/1801.07829
https://arxiv.org/abs/1908.05318
https://arxiv.org/abs/1909.12285
https://arxiv.org/abs/1612.00222
https://arxiv.org/abs/1806.01261
https://arxiv.org/abs/2001.05311
https://indico.fnal.gov/event/45230/contributions/195930/
https://arxiv.org/abs/1810.05165

Caterina Vernieri (FNAL)

Efficiency measurement in data

24

• Since there is no H/Z(bb̄) signal (yet!) we use:
• g(bb̄) jets as a proxy to measure the signal efficiency
• Jet selection has been designed to ensure jets are signal-like
• High AK8 pT jet (pT > 250 GeV)
• double-muon tagged jets (muon with pT > 7 GeV)
• mass cut (>50 GeV)

µµ

Z(bb̄) by the end of the talk

EXPERIMENTAL AND ANALYSIS CONSIDERATIONS
▸ Data/simulation correction scale factors
▸ Often measured using “proxy” processes like g→bb
▸ Difficult if tagger can tell g→bb and H→bb apart
▸ Using Z→bb is starting to become common

▸ What about cc?
▸ Same concepts, but smaller rates make measurement more

difficult
▸ Use ML to minimize data/simulation differences

[arXiv:1912.12238]
▸ Estimate uncertainties/resolution directly [arXiv:1912.06046]
▸ Decorrelation with analysis variables
▸ Often want to prevent algorithm from learning aspects

unconnected from the flavor element that you may use in the
analysis (e.g. pT, mass, etc.)

▸ Solutions explored so far: adversarial neural networks
[arXiv:1611.01046, arXiv:1409.7495], “brute force” designed
decorrelated taggers (DDT) [arXiv:1603.00027], loss function
penalty, training samples with varying mass and pT

10

82

SV
s

/ 0
.4

 u
ni

ts

210

310

410

Data
udsg
c
c from gluon splitting
b
b from gluon splitting

CMS

Double-muon-tagged AK8 jets
Muon-enriched multijet sample

 (AK8 jets) > 250 GeV
T

p

 (13 TeV, 2016)-135.9 fb

 2D flight distance significance0SV
0 2 4 6 8 10 12 14 16 18 20D

at
a/

M
C

0.5

1

1.5

SV
s

/ 1
 G

eV

210

310

410

510

610
Data
udsg
c
c from gluon splitting
b
b from gluon splitting

CMS

Double-muon-tagged AK8 jets
Muon-enriched multijet sample

 (AK8 jets) > 250 GeV
T

p

 (13 TeV, 2016)-135.9 fb

 mass [GeV]1SV
0 2 4 6 8 10 12 14 16 18 20D

at
a/

M
C

0.5

1

1.5

Je
ts

 /
1.

3
un

its

1

10

210

310

410

510

610 Data
udsg
c
c from gluon splitting
b
b from gluon splitting

CMS

Double-muon-tagged AK8 jets
Muon-enriched multijet sample

 (AK8 jets) > 250 GeV
T

p

 (13 TeV, 2016)-135.9 fb

z variable
0 10 20 30 40 50 60D

at
a/

M
C

0.5

1

1.5

Je
ts

 /
0.

04
 u

ni
ts

210

310

410

510

610
Data
udsg
c
c from gluon splitting
b
b from gluon splitting

CMS

Double-muon-tagged AK8 jets
Muon-enriched multijet sample

 (AK8 jets) > 250 GeV
T

p

 (13 TeV, 2016)-135.9 fb

Double-b discriminator
1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1D

at
a/

M
C

0.5

1

1.5

Figure 55: Distribution of the 2D flight distance significance of the secondary vertex associated
with the first t axis (upper left), the mass of the secondary vertex associated with the second
t axis (upper right), the z variable (lower left), and the double-b discriminator (lower right)
for double-muon-tagged AK8 jets with pT > 250 GeV. The simulated contributions of each
jet flavour are shown with a different colour. The total number of entries in the simulation is
normalized to the number of observed entries in data. The first and last bin of the upper and
lower right histograms contain the underflow and overflow entries, respectively.

Unsupervised Domain Adaptation by Backpropagation

Figure 1. The proposed architecture includes a deep feature extractor (green) and a deep label predictor (blue), which together form
a standard feed-forward architecture. Unsupervised domain adaptation is achieved by adding a domain classifier (red) connected to the
feature extractor via a gradient reversal layer that multiplies the gradient by a certain negative constant during the backpropagation-
based training. Otherwise, the training proceeds in a standard way and minimizes the label prediction loss (for source examples) and
the domain classification loss (for all samples). Gradient reversal ensures that the feature distributions over the two domains are made
similar (as indistinguishable as possible for the domain classifier), thus resulting in the domain-invariant features.

forward models can handle. We further assume that there
exist two distributions S(x, y) and T (x, y) on X ⌦ Y ,
which will be referred to as the source distribution and
the target distribution (or the source domain and the tar-
get domain). Both distributions are assumed complex and
unknown, and furthermore similar but different (in other
words, S is “shifted” from T by some domain shift).
Our ultimate goal is to be able to predict labels y given
the input x for the target distribution. At training time,
we have an access to a large set of training samples
{x1,x2, . . . ,xN} from both the source and the target do-
mains distributed according to the marginal distributions
S(x) and T (x). We denote with di the binary variable (do-
main label) for the i-th example, which indicates whether
xi come from the source distribution (xi⇠S(x) if di=0) or
from the target distribution (xi⇠T (x) if di=1). For the ex-
amples from the source distribution (di=0) the correspond-
ing labels yi 2 Y are known at training time. For the ex-
amples from the target domains, we do not know the labels
at training time, and we want to predict such labels at test
time.
We now define a deep feed-forward architecture that for
each input x predicts its label y 2 Y and its domain label
d 2 {0, 1}. We decompose such mapping into three parts.
We assume that the input x is first mapped by a mapping
Gf (a feature extractor) to a D-dimensional feature vector
f 2 RD. The feature mapping may also include several
feed-forward layers and we denote the vector of parame-
ters of all layers in this mapping as ✓f , i.e. f = Gf (x; ✓f).
Then, the feature vector f is mapped by a mapping Gy (la-
bel predictor) to the label y, and we denote the parameters
of this mapping with ✓y . Finally, the same feature vector f
is mapped to the domain label d by a mapping Gd (domain

classifier) with the parameters ✓d (Figure 1).
During the learning stage, we aim to minimize the label
prediction loss on the annotated part (i.e. the source part)
of the training set, and the parameters of both the feature
extractor and the label predictor are thus optimized in or-
der to minimize the empirical loss for the source domain
samples. This ensures the discriminativeness of the fea-
tures f and the overall good prediction performance of the
combination of the feature extractor and the label predictor
on the source domain.
At the same time, we want to make the features f
domain-invariant. That is, we want to make the dis-
tributions S(f) = {Gf (x; ✓f) |x⇠S(x)} and T (f) =
{Gf (x; ✓f) |x⇠T (x)} to be similar. Under the covariate
shift assumption, this would make the label prediction ac-
curacy on the target domain to be the same as on the source
domain (Shimodaira, 2000). Measuring the dissimilarity
of the distributions S(f) and T (f) is however non-trivial,
given that f is high-dimensional, and that the distributions
themselves are constantly changing as learning progresses.
One way to estimate the dissimilarity is to look at the loss
of the domain classifier Gd, provided that the parameters
✓d of the domain classifier have been trained to discrim-
inate between the two feature distributions in an optimal
way.
This observation leads to our idea. At training time, in or-
der to obtain domain-invariant features, we seek the param-
eters ✓f of the feature mapping that maximize the loss of
the domain classifier (by making the two feature distribu-
tions as similar as possible), while simultaneously seeking
the parameters ✓d of the domain classifier that minimize the
loss of the domain classifier. In addition, we seek to mini-
mize the loss of the label predictor.

https://arxiv.org/abs/1912.12238
https://arxiv.org/abs/1912.06046
https://arxiv.org/abs/1611.01046
https://arxiv.org/abs/1409.7495
https://arxiv.org/abs/1603.00027
https://arxiv.org/abs/1912.12238
https://arxiv.org/abs/1912.06046
https://arxiv.org/abs/1611.01046
https://arxiv.org/abs/1409.7495
https://arxiv.org/abs/1603.00027

FLAVOR TAGGING IN THE TRIGGER 11

▸High-level trigger

▸b-tagging algorithms available
using re-optimized tracking and
fast primary vertex finding

▸May need ways to speed up large ML algorithms
(dedicated re-training may improve perf. as well)

▸Using GPUs can help (e.g. Allen in LHCb,
Patatrack [arXiv:2008.13461] and SONIC in CMS
[arXiv:2007.10359])

▸ Level-1 trigger

▸ML algorithms in FPGA firmware may be
enabled with tools like hls4ml
[arXiv:1804.06913]

▸ In CMS only outer tracker will be available

High-Level
Trigger

7.5 kHz
1 MB/evt

40 MHz
L1 Trigger

750 kHz

https://arxiv.org/abs/2008.13461
https://arxiv.org/abs/2007.10359
https://fastmachinelearning.org/hls4ml/
https://arxiv.org/abs/1804.06913
https://arxiv.org/abs/2008.13461
https://arxiv.org/abs/2007.10359
https://fastmachinelearning.org/hls4ml/
https://arxiv.org/abs/1804.06913

SUMMARY AND OUTLOOK
▸ Heavy flavor tagging is a crucial tool for Higgs physics
▸ Methods have improved dramatically in recent years (and may continue to

improve a bit)
▸ At the same time, new issues (analysis-related, experimental, and

computational) to consider
▸ Outlook is bright

12

BACKUP

JAVIER DUARTE (UCSD)
SNOWMASS EF02
HIGGS+FLAVOR MEETING
SEPTEMBER 3, 2020

13

